BM123:Fine-tuning LLM: fakty i mity
Descarga y escucha en cualquier lugar
Descarga tus episodios favoritos y disfrútalos, ¡dondequiera que estés! Regístrate o inicia sesión ahora para acceder a la escucha sin conexión.
Descripción
🎙️ Czy zdarza Ci się zastanawiać, jak powstają zaawansowane modele AI, takie jak ChatGPT? Czy wiesz, że trening takiego modelu może kosztować tyle, co luksusowy apartament w Warszawie (a w...
mostra másW tym odcinku koncentrujemy się na wyjaśnieniu kluczowych etapów trenowania modeli LLM, takich jak pre-training, fine-tuning oraz alignment, oraz na omówieniu ich zastosowań i wyzwań.
Dowiesz się:
- Jak wygląda proces trenowania dużych modeli językowych od podstaw?
- Czym jest fine-tuning i kiedy warto go stosować? Jakie są kluczowe etapy tworzenia modeli AI i dlaczego dane są tak ważne? Jakie superkomputery są używane do trenowania AI i ile to kosztuje? Jak wygląda praca nad polskim modelem językowym Bielik 2.0?
🕒 Najważniejsze fragmenty:
00:01:52 - Remigiusz Kinas przedstawia się i opowiada o swoim doświadczeniu z ML/AI
00:08:57 - Wyjaśnienie czym jest fine-tuning modeli na przykładzie Computer Vision
00:14:23 - Omówienie różnych rodzajów modeli językowych (pre-trained, instruct, fine-tuned)
00:30:00 - Czym jest T? Trilion czy bilion?
00:31:05 - Ile danych potrzebujemy?
00:43:53 - Cyfronet Helios, czyli na czym był trenowany Bielik?
00:47:15 - Ile kart GPU ma Meta (Facebook)?
00:27:34 - Dlaczego dane są najważniejsze w procesie trenowania modeli AI 00:53:00 - Ile kosztuje wytrenować model LLM?
00:58:32 - Czy warto robić fine-tuning?
01:09:07 - Co nowego w Bieliku 2?
01:24:42 - Podsumowanie
Czytać: https://biznesmysli.pl/fine-tuning-llm-fakty-i-mity/
YouTube (ogłądać video): https://youtu.be/Kf55mex40-o
LinkedIn:
- https://www.linkedin.com/in/remigiusz-kinas/
- https://www.linkedin.com/in/vladimiralekseichenko/
Inne linki:
- https://ai.meta.com/blog/meta-llama-3/
- https://opencsg.com/datasets/AIWizards/Alpaca-CoT
- https://top500.org/lists/green500/list/2024/06/
- https://github.com/meta-llama/llama/blob/main/MODEL_CARD.md
- https://github.com/NVIDIA/Megatron-LM https://github.com/hiyouga/LLaMA-Factory
- https://arxiv.org/pdf/2406.06608
- https://github.com/vllm-project/vllm
W podcaście omówiono:
Rodzaje modeli LLM:
- Model bazowy (pre-trained): Posiada ogromną wiedzę, ale nie potrafi prowadzić konwersacji - służy do przewidywania następnego słowa.
- Model instrukcyjny (instruct): Potrafi wykonywać polecenia i prowadzić konwersacje. Powstaje poprzez fine-tuning modelu bazowego.
- Model po alignmencie: Model instrukcyjny dodatkowo "wygładzony" i dostosowany do preferowanego stylu konwersacji.
Fazy trenowania modelu:
- Pre-training: Najważniejsza faza, w której model nabywa wiedzę. Wymaga ogromnych zbiorów danych i jest bardzo kosztowna (rzędu setek tysięcy dolarów).
- Fine-tuning: Dostrajanie modelu do konkretnych zadań. Wymaga mniejszych zbiorów danych i jest tańszy od pre-trainu.
- Alignment: Dopasowanie stylu i sposobu odpowiedzi modelu. Wymaga najmniej danych i jest najtańszy.
Dane:
- Pre-training: Dane tekstowe w ogromnej ilości (terabajty), im więcej, tym lepiej. Ważna jest jakość danych.
- Fine-tuning: Instrukcje dla modelu (polecenia i przykładowe odpowiedzi) w ilości od tysięcy do milionów.
- Alignment: Pary odpowiedzi (preferowana i odrzucona) w ilości kilku tysięcy.
Koszty:
- Pre-training: Bardzo wysokie, porównywalne z ceną mieszkania w Warszawie.
- Fine-tuning: Znacznie niższe od pre-trainu.
- Alignment: Niskie, możliwe do przeprowadzenia na lokalnej maszynie.
Mit fine-tuningu jako rozwiązania na wszystko:
- W większości przypadków fine-tuning nie jest konieczny.
- Lepiej skupić się na promptowaniu (zadawaniu precyzyjnych pytań) i technikach RAG (Retrieval Augmented Generation - wzbogacanie odpowiedzi o dane z zewnętrznych źródeł).
- Fine-tuning może być przydatny w wąskich dziedzinach, dla specyficznych formatów odpowiedzi lub w celu zapewnienia bezpieczeństwa danych.
Bielik 2.0: Nowa wersja polskiego modelu językowego.
- Większy model (11 miliardów parametrów).
- Dłuższy kontekst wejściowy (32 tysiące tokenów).
- Wsparcie dla Function Calling (beta).
- Uczenie wzmacniane (RLHF).
- Więcej wersji kwantyzacyjnych.
- Wsparcie dla VLLM.
- Test na inteligencję emocjonalną (EQ Bench).
- Planowana wersja multimodalna (tekst i obraz).
#ai #genai #llm #podcast #machinelearning #datascience #finetuning
Información
Autor | Vladimir Alekseichenko |
Organización | Vladimir |
Página web | biznesmysli.pl |
Etiquetas |
Copyright 2024 - Spreaker Inc. an iHeartMedia Company
Comentarios