[DataMasters] Getting Data Mastering at Scale Right

1 de jul. de 2020 · 31m 45s
[DataMasters] Getting Data Mastering at Scale Right
Descripción

What's required to master large numbers of data sources? First, avoid approaches that require writing rules. Then use machine learning and cloud computing to efficiently handle the workload. That advice...

mostra más
What's required to master large numbers of data sources? First, avoid approaches that require writing rules. Then use machine learning and cloud computing to efficiently handle the workload. That advice comes from Mike Stonebraker, a database pioneer who helped create the INGRES relational database system, won the 2014 A.M. Turing Award, and has co-founded several data management startups, including Tamr.
Mike, who's an adjunct professor of computer science at MIT, talks about common data mastering mistakes, why traditional tools aren't right for the task, and shares examples of companies that have successful mastered data at scale.
mostra menos
Información
Autor PI Media
Organización PodIl
Página web -
Etiquetas
-

Parece que no tienes ningún episodio activo

Echa un ojo al catálogo de Spreaker para descubrir nuevos contenidos.

Actual

Portada del podcast

Parece que no tienes ningún episodio en cola

Echa un ojo al catálogo de Spreaker para descubrir nuevos contenidos.

Siguiente

Portada del episodio Portada del episodio

Cuánto silencio hay aquí...

¡Es hora de descubrir nuevos episodios!

Descubre
Tu librería
Busca