LongRAG
Descarga y escucha en cualquier lugar
Descarga tus episodios favoritos y disfrútalos, ¡dondequiera que estés! Regístrate o inicia sesión ahora para acceder a la escucha sin conexión.
Descripción
📜 LongRAG: A Dual-Perspective Retrieval-Augmented Generation Paradigm for Long-Context Question Answering The source is a research paper that proposes a new approach called LongRAG for enhancing the performance of Retrieval-Augmented...
mostra másThe source is a research paper that proposes a new approach called LongRAG for enhancing the performance of Retrieval-Augmented Generation (RAG) systems in Long-Context Question Answering (LCQA) tasks. LongRAG addresses two major issues that limit the effectiveness of traditional RAG systems: the "lost in the middle" problem, where relevant information within long contexts is often missed, and the challenge of identifying precise factual details amid noise. This new paradigm uses a dual-perspective approach that effectively integrates global long-context information with specific factual details. The researchers demonstrate that LongRAG significantly outperforms other LCQA methods and traditional RAG systems, including those using large language models, on three multi-hop datasets.
📎 Link to paper
Información
Autor | Shahriar Shariati |
Organización | Shahriar Shariati |
Página web | - |
Etiquetas |
Copyright 2024 - Spreaker Inc. an iHeartMedia Company