MLE-bench

18 de oct. de 2024 · 12m 26s
MLE-bench
DescripciĂłn

🤖 MLE-bench: Evaluating Machine Learning Agents on Machine Learning Engineering The paper introduces MLE-bench, a benchmark designed to evaluate AI agents' ability to perform machine learning engineering tasks. The benchmark...

mostra más
🤖 MLE-bench: Evaluating Machine Learning Agents on Machine Learning Engineering

The paper introduces MLE-bench, a benchmark designed to evaluate AI agents' ability to perform machine learning engineering tasks. The benchmark comprises 75 Kaggle competitions, each requiring agents to solve real-world problems involving data preparation, model training, and code debugging. Researchers evaluated several cutting-edge language models on MLE-bench, with the best-performing setup achieving at least a bronze medal in 16.9% of the competitions. The paper investigates various factors influencing performance, such as resource scaling and contamination from pre-training, and concludes that while current agents demonstrate promising capabilities, significant challenges remain.

đź“Ž Link to paper
mostra menos
InformaciĂłn
Autor Shahriar Shariati
OrganizaciĂłn Shahriar Shariati
Página web -
Etiquetas

Parece que no tienes ningĂşn episodio activo

Echa un ojo al catálogo de Spreaker para descubrir nuevos contenidos.

Actual

Portada del podcast

Parece que no tienes ningĂşn episodio en cola

Echa un ojo al catálogo de Spreaker para descubrir nuevos contenidos.

Siguiente

Portada del episodio Portada del episodio

Cuánto silencio hay aquí...

¡Es hora de descubrir nuevos episodios!

Descubre
Tu librerĂ­a
Busca